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Calculation of the transport coefficients for a dilute simple 
gas using an iterative solution of the Boltzmann equation 
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Abstract. The Chapman-Enskog second approximation to Boltzmann’s equation for a 
dilute simple gas is obtained for several different potential models using an iterative 
procedure. The perturbation function to the local Maxwellian distribution, and various 
transport coefficients, are found as approximate sums of infinite series. Transport 
coefficients are calculated for Maxwellian, pseudo-Maxwellian, and rigid-sphere potential 
models and are compared with those obtained by the standard Chapman-Cowling 
method. 

1. Introduction 

We consider in this paper an iterative method of obtaining the distribution function 
and transport coefficients for a pure gas with no internal degrees of freedom, within 
the context of the first-order Chapman-Enskog solution to the Boltzmann equation 
(Chapman and Cowling 1970, chap. 7). This method has already been used with some 
success in analogous problems in the field of transport phenomena of electrons in 
metals (Jones 1969, 1971), and it is therefore of interest to see whether such an 
approach may also be usefully applied to transport phenomena in gases. 

The iterative method is an alternative to the standard procedure introduced by 
Chapman and Cowling (1970, chaps 7, 9, lo), in which the first-order perturbation Q, 
to the distribution function is expressed as an infinite series of Sonine polynomials and 
the orthogonal properties of these polynomials are exploited to obtain the transport 
coefficients; to a good approximation, at least, by using only the first few terms in the 
infinite series of these polynomials. 

With the iterative method, the perturbation function Q, is obtained as an infinite 
sum, successive terms of which are generated by successive iterations. From each 
term in the series we then obtain a corresponding term in the sum making up each 
transport coefficient. The series thus obtained are assumed to follow approximate 
geometrical progressions, as discussed in § 2, and the final approximations are then 
calculated on the basis of this assumption. 

The iterative method itself is presented in 0 2. In subsequent sections the method 
is applied to the calculation of the transport coefficients for three different potential 
models, the Maxwellian, pseudo-Maxwellian (soft-sphere), and rigid-sphere models. 
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These particular models are chosen because they are well documented and they 
provide the most direct way of assessing the feasability and accuracy of the method 
presented in this paper. Finally, in b 5 we will discuss the results obtained. 

2. Outline of iterative procedure 

The Boltzmann equation for the velocity distribution function f for a single- 
component gas subject to no external forces has the form 

af 
at ar 
af+ v 0 -= Lf 

where the collision integral Lf is a functional of f, and involves the dynamics of a 
binary collision between molecules of the gas. The standard Chapman-Enskog solu- 
tion of this equation is obtained in well known fashion (Chapman and Cowling 1970, 
chap. 7) as a set of successive approximations 

f =fO)+fO’@(’’+fcO)@(2)+. . . . ( 2 )  
The first approximation fO’ is of Maxwellian form 

fo’= n ( m / 2 ~ k T ) ~ ’ ~  exp[-m(v -u0)’/2kT] 

with n = n(r,  t )  the molecular number density at (r, r), uo = uo(r, t )  the stream velocity, 
T = T(r, t )  the temperature, k the Boltzmann constant, and m the mass of a molecule. 
The functions dN’ are of order N in the spatial gradients of n, uo, and T. We wish to 
consider the calculation of transport coefficients for the gas, in the second approxima- 
tion of Chapman and Enskog. We therefore consider the solution dl’. This can be 
written (Chapman and Cowling 1970, chap. 7) as 

f”( V ) [ ( a  v2 - $)V.  VT + 2a VOV: vu01 

= 1 fO’(V)~’(U)(~“(U’)+@.“’(V’)-@.“’(U)-~(’’(V))gb db de du. (4) 

Here U = u - uo, V = U - uo, a = m/2kT, VoV = V V - f V 2 6  is a symmetric non- 
divergent tensor; u and v are the velocities of two molecules prior to collision, their 
velocities after collision being U’ and U’ respectively. 

Since the left-hand side of equation (4) contains linear gradient terms in T and uo, 
dl’ may be written 

a“) = 4*. v In T + +,, : vu0 = 4 * ~ .  v In T + ~,,v’v: vuo. ( 5 )  
Substituting ( 5 )  into (4) and equating like gradients we then have 

(aV2-$ )V=-4 , (V)V[ f@’(U)gb  db de du 

+ 5 f@’(U)(q5,(V’)V’+q5,,(U’)U’-~,,(U)U)gb db de du 
and 

2aV0V= -q5,,(V)VoV[ fO’(U)gb db de du 

+I f’”’( U)(+,,( V ’ )  V’O V ’  + 4,,( U‘)U’O U’ - q5,( U ) U o  U)gb db de du (7) 
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where we have used the fact that & ( V )  and & ( V )  are independent of the collision 
operator L. For convenience we can write both (6) and (7) in the following more 
compact form: 

x = -+Lo+L1+ (8) 
where + is either C$A or 4,,, X is either (aV2-$)V or 2aV0V, and Lo, L1 are the 
appropriate operators defined for C$,, by equation (6) and for +q by equation (7). 

One may solve equation (8) by iteration. The procedure may be formalised by 
writing 

+ ( V ) =  f & p i ) ( V )  
i = O  

(9) 

where 5 is a parameter eventually to be set equal to unity. Setting 

X =  L LO+&^+ (10) 

and equating like powers of 5, we obtain 

x( v)  = - 4 ( O ) (  v)&, 
+(‘)Lo = ~ ~ + ( i - l )  f o r i a l ,  

In these equations, 5 functions as an ordering parameter. The auxiliary conditions 
(Chapman and Cowling 1970, p 113) may be satisfied by demanding that they be 
satisfied separately for each 4(i). This condition is met by using 6:’ in place of d!), 
where 

$ f ’ ( V ) V .  V In T = + f ’ ( V ) V .  V In T+cu(’). V for i s 0  (13) 

with a(’) determined by the condition 

m f”’( V ) d i ) (  V )  V d V = 0. I 
The heat flux q is given by 

q = -A V T = J $m V 2  Vf“’( V ) @ )  do. (15) 

One may then obtain an iterative solution for the thermal conductivity A by using the 
iterative solution for 4 (equations (1 l t ( 1 2 ) ) .  One thereby obtains 

q = - h V T = $ m l  V2Vfo)(V)  f (4!’ (V)V.VT+@a(’ ) .  V ) d V .  (16) 
i = O  

On writing 

expressions for A ( i )  in terms of the respective 4:) can then be obtained. 
The coefficient of shear viscosity 7, can be obtained similarly: by using the 

second-order correction to the pressure tensor and equations (1 1)-(12), one obtains 
m 

P = -2q,V’u0 = 6 m  f”’( V )  q5:)( V)V4Vsuo do I i = O  
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where V u o ,  the shear viscosity tensor, is the symmetric non-divergent part of the 
tensor Vuo. On writing 

we can obtain expressions for 7:) in terms of the respective Q c " s .  
In practice, the iterative procedure is used to calculate only the first few terms in 

(17) and (19). These terms are then assumed to form an approximate geometric 
progression, and approximations to the transport coefficients are determined accord- 
ingly. Thus, for instance, the first approximation to A is taken to be 

A (0)  

= 1 - (A (')/A (0))' (20) 

it is this approximation which must be compared with the first approximation of 
Chapman and Cowling when comparing the two methods. 

That one may expect A") and q ( i )  to form approximate geometric progressions may 
be seen by writing the iterative relations ( l l ) ,  (12) in the form 

+(")= -LO'(LILO1)"X (all n > 0). (21) 

+(") = -a"L;lX, 
If X is an eigenfunction of (LILO'), with eigenvalue CY, then 

and the 4'") (and thus A(") and 7'")) form a geometric progression. More generally, 
one may suppose X expanded in eigenfunctions +hi (supposed a complete set) of 
(LILO') with eigenvalues ai: 

X = ai+hi. 
i 

For large n, the eigenvalue ar  of maximum modulus will dominate the sum over i, and 
the nth term in equation (21) will approach the value (ct;a&), as in a geometric 
progression. The corresponding term for a transport coefficient will involve integrals 
of + in velocity space which one may expect to include a certain amount of averaging, 
thus enhancing the contribution of the dominant eigenfunction and making the A'"' 
and 77'") even better approximations to geometric progressions than the Suc- 
cessive approximations are determined by the consideration that the A'"' and q'") are 
expected to approach a geometric progression more closely with increasing n. Thus, 
we take 

as the second approximation to A .  

3. Calculation of the transport coefficients for Maxwellian and pseudo-Maxwellian 
molecules 

In this section we consider the iterative calculation of transport coefficients for 
intermolecular forces such that the result can be obtained analytically. We shall 
consider both Maxwellian and pseudo-Maxwellian molecules. 
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For Maxwellian molecules, the potential can be written 

K 
V(r) = 7 

4r 

and it can easily be shown that for this potential (Chapman and Cowling 1970, p 173) 
K 1/2 

gb db = (-) YO dvo 
CL 

where p is the reduced mass, and YO = b(wg2/K)'l4. Hence gb db does not depend on 
g, but only on vo. 

For pseudo-Maxwellian ('soft-sphere') molecules, the potential is given by (Koga 
1970, p 229) 

S + W  
K '  

v ( r ) = T '  

with 
K' = KIlUS-l(g*/g)(S-1)/2 

where K" and g* are constants; then one can show that 

gb db = &r2g* sin x dx (24) 

where U is the diameter of a molecule, and ,y the deflection angle. As is the case for 
the Maxwellian model, g disappears from the collision integrals. For this model each 
collision at fixed g appears like a collision between two solid spherical bodies, while if 
g increases, the effective molecular cross section decreases. The pseudo-Maxwellian 
molecules have a finite cross section while retaining all the conveniences of Max- 
wellian molecules; as a result, many calculations are appreciably simplified for them. 

3.1. Thermal conductivity 

From the zeroth iteration, equation (1 l), we obtain an expression for 4:'' given by 

($-aV2)V. V T  
Lo 

qhio'(V)V . VT = 

For Maxwellian and pseudo-Maxwellian molecules, the integral Lo defined by equa- 
tion (8) is velocity independent. Hence one may write 

(26) 4?'( V) = A'''+ B(')cy V2 

where A('' and B'O' do not depend on U. Performing the first iteration, equation (12), 
we get for 4:' 

4?'V2Lo= V.L1[(A'o'+B'o'V2)V]. (27) 
By using conservation of momentum, and standard properties of the dynamics of a 
collision, equation (27) can be shown to reduce to 

4i1' I gb db = 2B'O' I (1 -cos2 x)gb db +A(') I gb db +$B'o'aV2 I (1 +cos2 X)gb db 
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where the angle x is defined by figure 1. It thus follows, in general, that 

Figure 1. 

In order to satisfy the auxiliary conditions, one must instead of 4:' use the 
re-defined perturbation function 4:) of equation (13); the factor cy(') in this equation 
is determined by equation (14), and one finds that 

= -(A(i)+5 ( i )  V T  
ZB '7. 

Thus, we obtain from equations (13) and (30) that 

& f ) V . E =  ((yV'-$)B(')V.-. V T  
T T 

As already stated, it is the @) rather than the 
conditions and are consequently used in the calculation of A"). 

which obey all the auxiliary 

From equations (28), (29), and (30) we can write 

Equation (32) shows that the 23") are described by a geometrical progression whose 
sum is given by 

with 

1 
27rn jgb  db '  

=-  1 
jfo'(U)gb db de du 

B(O) = - 
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therefore 

(33) 
1 

n.rr l ( 1 -  cos2 x)gb db 
B = -  

The coeficient of thermal conductivity A can then be obtained from the heat flux, 
equation (16), and one has 

5Bnk2T A=--  
2m ' 

(34)  

Finally we have to consider the form of B for the respective models. 

(22) and the definition 
In calculating B from equation (33), for Maxwellian molecules, one uses equation 

m 

A1(5)= (1-cos'x)v dvo. 

Values for A2(5) needed here are given in the literature (Chapman and Cowling 1970, 
p 172). One thus obtains 

and 

5 k 2 T  
(35) 

This result agrees with the value of A obtained in the usual way (Chapman and 

For the pseudo-Maxwellian or soft-sphere model, from equation (24), equation 
Cowling 1970, p 174). 

(33) for B becomes 

3 B=-- 
n m 2 g *  

while A is given by 

15 k 2 T  
2 7 ~  ma2g*' 

A =- 

This result agrees with the value of A obtained by the standard calculation (Koga 
1970, p 230). 

3.2. Viscosity 

From the zeroth iteration, equation ( 1  l ) ,  we have 

2 a v O v :  vu0 
@'(V)V": v u ,  = - 

Lo (37) 

(38) 

This is of the form 

q5',0'(V)V0V: v u o = D ( o ) v O v :  vu0 
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generalisation of the form 
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4 $ ) ( V ) V o V :  V U O =  D"'V0V: VUO. (39) 

This is indeed the case. Following the method used for B(')'s we obtain the relation- 
ship 

Equation (40) shows that the D") are described by a geometrical progression whose 
sum is given by 

or (41) 
4ff D = -  

37rn (1 -cos2 ,y)gb db ' 

The coefficient of viscosity 77 can then be obtained from equation (18) for the pressure 
tensor. One obtains 

nk2T 
m 77s = -D-. 

Finally, we have to evaluate D for the models under consideration. 
For Maxwellian molecules we have from equation (23) that 

D = -  

Hence vs is given by 

(43) 

This result agrees with the value of 77, obtained by the standard calculation (Chapman 
and Cowling 1970, p 174). 

For the soft-sphere model, we obtain from equation (24) the expression for D :  

Hence the coefficient of viscosity is given by 

2kT  
77s = - (44) 7r(+2g*. 

This is the same as the value of qs obtained by the standard Chapman-Enskog method 
(Koga 1970, p 230). 
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4. Rigid-sphere potential model 

The potential for rigid-sphere molecules may be written (Kogo 1970, p 228) 

with R = R ’ d - ’ ;  then one can show that for this model 

b db = :a2 sin x dx. (45) 

Hence the collision integral is g-dependent; in consequence, the analysis to be 
performed is more complex than for the Maxwellian case, and the final integrals will 
be evaluated numerically. 

4.1. Thermal conductivity 

We use the iterative procedure of equations ( 1  1 )  and ( 1 2 ) ,  together with equation (6) ,  
to obtain the relations 

(~-aV2)V=q5io’(V)V[f’0’(U)gb db de du 

and 

4 ! ’ ( V ) V [  fo’(U)gb db d r  du 

= [ p)(u)(~ii-l)(v’)v’v’. t+4y-”(uf}ufi9f. v 
(U)Ui?. V)gb db de du. (46) 

The integrals are then manipulated using methods similar to those of Brooker and 
Green (1968), and the equations (46) can be shown to reduce to 

) du c uv 
2 -nuz +U3+ uv2 

4:O’ (V)=($ -av2)  47r U 2ca3’24J) e 

(‘V3+ vu) +l e-au2 uv 
for 4:’’ and 

(47) 
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for 4"). Additional mathematical details may be found in Martin (1972). 
Because of the difficulty associated with the computation of multiple integrals, one 

is in practice restricted to the calculation of the first few terms in 4. The present work 
will not be carried beyond the calculation of 41'). 

From equations (16) and (17), A is given as the sum of an infinite set of A ( i ) ,  where 
each A(')  is obtained from a corresponding 4y). The relation reduces to 

upon performing the angular integrations. Assuming that the A ( i )  follow an approxi- 
mate geometric progression, we then obtain successive approximations to A following 
equations (20) and (22). 

We use the numerical values of 4:') obtained from equation (47) to obtain A'') 
from the numerical integration of equation (49). We obtain 

A (O) = 2( G) k3T '/'(O*48681 + 3  X lo-'), 

which is about 40% of the value of the fourth approximation [ A I 4  obtained by 
Chapman and Cowling (1970, p 169); [AI4 may be considered 'exact' for present 
purposes. A( ' )  is calculated similarly, and one obtains 

The assumption that the A (') follow an approximate geometrical progression then gives 
us the first approximation to A using equation (20), 

The value obtained is a good approximation, about 95% of the value for [AI4 .  The A'2) 
term is calculated similarly; the result is 

On comparing the ratios A'"/A"'=0.5724*2~ lov4 and A'2'/A(')=0.605f9X 
it can be seen that they do not differ much, about 3-7%. This is consistent with the 
supposition that the A % form an approximate geometrical progression. 

The second approximation to A is obtained from equation (22) (this corresponds to 
using the Pad6 approximation [ l ,  11). This result is 

which is equivalent to (99.2* 1.3)0/, of the value [A]4. (If we had used the Pad6 
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approximation [0,2], we would have obtained an answer which is 99% of that 
obtained by the standard method). 

4.2. Calculation of the coefficient of viscosity 

The calculation of the coefficient of viscosity by the iterative method is similar to that 
for thermal conductivity. We use equation (7) together with the iterative procedure of 
equations (11) and (12), and reduce the resulting integrals by methods similar to those 
of Brooker and Green (1968) to integrals suitable for numerical calculation. The 
relations may be shown to reduce to 

) dul 1-1 +lVmu e ( u v  
2 -uu2 $v'+ vu2 

for I$',) and 

2 v  u 1  4 ( V )  = z[ 6 4 ',) ( U )  U ( f /,, ~ 3 ~ 3  ( U + 4y - 5 U ' y  * + V 2  y ') eAaY2 d y 

m 
e - a Y 2  dy)  du  + [ 4',)((v)u4 e-a(u2-VZ) 

-26 uv V 

V4 +4y4 - 5 V2y2 + Uzy2) e-uy2 dy 

e - u y 2 d y ) d u ] [ r U  2 e -aU2 ( +U3+ uv uvz 

2 -uu2 $v3+u2v -l +Jvmu e ( uv ) dul 
u4 u2 
7v 3v 
v4 vz 

--OU24 :) ( U )  U'( - -) du 

U)U4( 3 7u - -) 3u du] 

( 5 5 )  

for 4:). 

from equation (18) for the pressure tensor, 
The terms 7:) in the expression (19) for the coefficient of viscosity 7, are obtained 

evaluated numerically. The present work is not carried beyond calculation of 762). 
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The final results for vp), vi1) and qp) are: 

(59) 

The value of 77:') is about 62% of the value of the fourth approximation [77,14 of 
Chapman and Cowling (1970, p 169); the latter value may be assumed 'exact' for 
present purposes. 

The first approximation to q, is obtained from the values (58) and (59), together 
with the assumption that the 7; )  form a geometrical progression, so that 

q io) 
1 - (7p/v:O))' 

77, = 

We obtain 

The value of q, obtained here is a good approximation, being about 91% of the value 
[77,]4. The second approximation uses equation (60) and the relation 

The result is 

U 

which is equivalent to 95*3'/0 of the value [qSl4. 

5. Conclusions 

The iterative method gives solutions for the pure gas coefficients of thermal conduc- 
tivity, A, and viscosity, q,, as well as the solution for the first-order perturbation dl) to 
the equilibrium distribution function fO', equation (2), within the context of the 
first-order Chapman-Enskog solution to the Boltzmann equation (Chapman and 
Cowling 1970, chap. 7). 

For the Maxwellian and pseudo-Maxwellian models the q 5 ' j )  and hence A(')'s and 
q% form an exact geometrical progression which can be summed, and the analytic 
values for the transport coefficients are the same as obtained by the standard Chap- 
man-Enskog method. One also obtains the exact solutions for the q 5 ' j ) .  

For a pure gas of hard spheres, we have found values for the transport coefficients 
which are good approximations to their exact values. The first and second approxi- 
mations to A ,  equations (52) and (54), give values of 0.948, and 0.992, of the exact 
value; the corresponding approximations to v s  are 0.911 and 0-953 of the exact value. 
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This example is one in which the standard Chapman-Cowling method of calculation is 
known to converge rapidly (Chapman and Cowling 1970, chap. 10). The Chapman- 
Cowling first and second approximations to A are 0.975, and 0.998, of the exact value, 
the corresponding approximations to v s  being 0,984, and 0,999, of the exact value. 
The Chapman-Cowling scheme provides a somewhat better approximation to the 
transport coefficients, order for order, giving a better approximation to the coefficient 
of viscosity than to the coefficient of thermal conductivity. The iterative procedure is 
also seen to give very good approximations to the transport coefficients, and appears 
to be particularly good in the calculation of the coefficient of thermal conductivity. 

There are circumstances in which the Chapman-Cowling method is known to 
converge more slowly, for instance in the case of a gas mixture in which the molecular 
masses of the component species differ greatly from each other. For cases such as this, 
we suggest that the iterative method may provide a useful alternative to the usual 
Chapman-Cowling procedure for calculating transport coefficients. 

The iterative method has been extended to deal with binary gas mixtures. This 
work will be presented in a subsequent paper. 
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